Psy393: Cognitive Neuroscience
Prof. Anderson
Department of Psychology
Week 3

Part 4: Gross and Functional Neuroanatomy

CNS: Ontogeny & Phylogeny
- Increase in brain structural complexity: e.g., Neocortex
- Development (infants --> adults)
- Evolution (reptiles --> humans)

Comparative Neuroanatomy

Development of Sulci
- Sulci appear at predictable points in fetal development with the most prominent sulci (e.g., Sylvian fissure) appearing first.
- Cortical wrinkling increases during development

Triune Brain: 3 in 1
- Triune brain (Maclean)
 - 3 brains in 1
 - Neocortex
 - Limbic system
 - Reptilian complex (BG)
- Computer metaphor?
 - Old wrapped around new
Axis nomenclature

Navigating the brain

Axis?

Axis?

Axis?

What perspective?
What perspective?

Additional useful terms
- Contralateral
 - opposite side
- Ipsilateral
 - same side
- Unilateral
 - on one side only
- Bilateral
 - on both sides

Division of nervous system
- Central (CNS)
 - Brain
 - Spinal cord
- Peripheral (PNS)
 - Afferents (Input)
 - Sensory nerves
 - Efferents (Output)
 - Somatomotor
 - Autonomic (ANS)
 - Sympathetic
 - Parasympathetic

Major divisions of CNS
- Reflex/Vital functions
 - Spinal cord
 - Brainstem
 - Hindbrain (Pons, Medulla), Midbrain
 - Cerebellum
 - Diencephalon
 - Thalamus and hypothalamus
 - Forebrain
 - Basal Ganglia
 - Cortex (older)
 - Neocortex
- Cognition
 - Primary sensory, Association

PNS/CNS Interface: Spinal cord
- Division of I/O
 - Dorsal: Sensory
 - Ventral: Motor
- PNS
 - Sensory/Motor Ganglia
- CNS
 - Spinal cord
- Simple reflexes
 - Little cognitive control/intervention

PNS: Autonomic nervous system
- Visceral motor System
- Innervates smooth muscles and glands
- Antagonistic action
Brainstem: Medulla
- Medulla
 - Continuous w/ spinal cord
 - Primary relay for somatosensation and cranial nerves
 - Controls many vital functions
 - Respiration
 - Heart rate
 - Crossing of motor fibers
 - Contralateral control
 - Reticular activating system
 - Arousal
 - Sleep/wake cycles
 - Damage: death, coma

Brainstem: Midbrain
- Inferior colliculus
 - Sound localization
 - Reflexive orienting to sounds
- Superior colliculus
 - Orienting to visual events
 - Foveation
- Substantia nigra
 - Dopamine projection to subcortical motor system (BG)

Brainstem: CNS: Brainstem: Pons
- Pons
 - Superior to medulla
 - Main connection b/wn cortex & cerebellum
 - Superior olive: major auditory relay
- Function: Diverse
 - Eye movements
 - Vestibular (balance)

Brainstem: Neurotransmitter systems
- 4 main systems
 - Cholinergic
 - Dopaminergic
 - Noradrenergic
 - Serotonergic
- Multiple receptor types
 - E.g., Serotonin has at least 9 types
- Cells bodies largely in midbrain
- Project throughout brain
 - Distinct and overlapping sites

Neurotransmitters
- >100 recognized NTs
- Definition of a NT
 - Synthesized in presynaptic neuron
 - Released when terminal boutons activated by AP
 - Postsynaptic neuron has selective receptors for substance
 - When artificially applied postsynaptically leads to same response as presynaptic release
 - Blocking NT release blocks AP

Cholinergic system
- ACh Origin
 - Basal forebrain, Midbrain
- Function
 - Arousal, Waking EEG
 - Cortical excitability
 - REM
 - Memory
- Disease: Alzheimer’s
Dopaminergic system
- **DA Origin**
 - Substantia Nigra
 - Ventral tegmental area
- **3 subsystems:**
 - Nigrostriatal (NS), mesolimbic (ML), mesocortical (MC)
- **Function**
 - Regulates action (NS)
 - Mental (MC) and emotional (ML)
 - Working memory
 - Anticipation of reward
- **Disease:** Parkinson's, Schizophrenia, Addiction

Noradrenergic system
- **NE Origin**
 - Locus coeruleus (LC)
- **Function**
 - LC
 - Arousal/Attention
 - LTM: Emotional memory
- **Disease:** ADHD

Serotoninergic system
- **5-HT Origin**
 - Raphe nuclei
- **Function**
 - Arousal
 - Mood, Anxiety
 - Pain
 - Aggression
 - Sexual behavior
 - Sleep
 - Memory
- **Disease:** Depression
 - Serotonin specific reuptake inhibitors (SSRIs)

Cerebellum
- **Like cerebrum:** “Little brain”
 - Cortex
 - Deep nuclei
- **Function**
 - Voluntary movement
 - Coordinated movement
 - Walking, piano playing, speech
 - Ipsilateral control
 - Higher cognitive functions
 - Timing
 - Working memory
- **Damage:** Not loss of motor function, but precision of movement

Diencephalon: Thalamus
- **Subcortical nuclei**
- **Deep/midline**
- **Sensory gateway to cortex (thalamo-cortical)**
 - Every modality
 - Med. geniculate (Aud)
 - Lat. Geniculate (Vis)
 - Except olfaction
- **Cortico-thalamic feedback**
 - From same cortical areas
 - Visual cortex —> L. Geniculate
- **Function:** Tune sensory transmission

Diencephalon: Thalamus
- **Effect of damage**
 - Depends on nuclei
 - Sensory, motor, Cognitive (memory)
 - Similar to cortical projection sites
Diencephalon: Hypothalamus

- Ventral to thalamus
- Controls
 - ANS
 - Endocrine function: Hormone release
- Function
 - Homeostasis: Regulation of eating, drinking
 - Fight or flight
 - Light-Dark cycles
 - Retina —> suprachiasmatic nucleus

Basal ganglia

- Basal = Base, Ganglia = cell bodies
- 3 main subdivisions
 - Neostriatum
 - Caudate
 - Putamen
 - Globus pallidus
- Function
 - Motor control
 - Executive functions

Limbic system

- Limbic = "border"
- Controversial definition
- Older primitive cortex
 - Archicortex
 - Hippocampus
- Subcortical nuclei
 - Amygdaloid complex
- Functions
 - Sense of smell
 - Emotion
 - Memory

Cerebral cortex

- Greatest expansion across phyla
- 5/6ths of total brain mass evolved over last million years
- What makes us (and dolphins?) special
 - 1-5 mm thick
 - Up to 6 layers of cells
 - Neocortex (6)
 - Archi or allocortex (1-4)
- Heavily wrinkled

Cortex: Laminar organization

- Layers of distinct cell bodies
- Basis for cytoarchitecture
 - Brodmann
- Strict I/O org
 - Input layer
 - Output layer
 - Not random

Cortical surface: Sulci and Gyri

- Increased surface area
- Decreased axonal distance
Lobes
- Frontal lobe
- Temporal lobe
- Occipital lobe
- Parietal lobe
- Central (rolandic) sulcus
- Sylvian (lateral) sulcus

Longitudinal Fissure
- Divides brain in 2 hemispheres

Sylvian Fissure (or lateral sulcus)
- Deep, mostly horizontal
- Insula is buried within it
- Separates temporal lobe from parietal and frontal lobes

Parieto-occipital Fissure and Calcarine Sulcus
- Parieto-occipital fissure (red)
- Calcarine sulcus (blue)
- Cuneus (pink)
- Lingual gyrus (yellow)

Collateral Sulcus
- Colateral
- Divides lingual (yellow) and parahippocampal (green) gyrus from fusiform gyrus (pink)

Superior and Inferior Temporal Sulci
- Superior Temporal Sulcus (red)
- Divides superior temporal gyrus (blue) from middle temporal gyrus (yellow)
- Inferior Temporal Sulcus (blue)
- Not usually very continuous
- Divides middle temporal gyrus from inferior temporal gyrus (red)
Cerebral cortex – primary somatosensory and motor cortices

- **Central sulcus**
- **Postcentral sulcus**

Primary motor cortex: final exit point from cortical neurons for fine motor control
Primary sensory cortex: first region in cortex to receive information from specific sensory modality

Superior and Inferior Frontal Sulci

- **Superior Frontal Sulcus** (red)
 - divides superior frontal gyrus (mocha) from middle frontal gyrus (pink)
- **Inferior Frontal Sulcus** (blue)
 - divides middle frontal gyrus from inferior frontal gyrus (gold)

Orbital gyrus (green) and frontal pole (gray) also shown

Medial Frontal

Superior frontal gyrus continues on medial side
Frontal pole (gray) and orbital gyrus (green) also shown

Cingulate gyrus

Cingulate sulcus

Corpus callosum

- Massive interhemispheric highway
- Make 2 brains 1

Primary and Association cortices

- Primary
 - Sensory/motor maps
 - Clear organization
- Association
 - Cognitive maps
 - Organization?

Primary somatosensory and motor cortices: Organization

- Topographic mapping
- Inverse mapping
- Distortion
- Contralateral representation
Primary visual cortex

- Topographic mapping
 - Retinotopic
- Inverse mapping
 - Up is down
 - Down is up
- Distortion
 - Foveal over representation
- Contralateral representation

Extra info

- The following slides have been inserted to provide you with a more detailed resource for brain surface anatomy
Part 2: Methods of Cognitive Neuroscience

- Cognitive Psychology
- Lesion method: Cognitive Neuropsychology
- Brain recording
 - Single cell, Intracranial recording, Scalp recording (EEG, ERP)
 - Metabolic imaging (PET, fMRI)

Cognitive Psychology

- Information processing depends on internal mental representations
- Say goodbye to behaviorism!
- Mental representations undergo systematic transformations
- Flowchart models of operations

Characterizing mental operations: Normal human performance

Same or different category?

5 different conditions:
- physical identity: A A
- phonetic identity: A a
- same category
 - both vowels: A U
 - both consonants: S C
- different category: A S

Mental Chronometry

- Mental chronometry
 - Accuracy
 - Response time
 - Sternberg memory scanning
 - mental operations
 - encoding - visually process letter,
 - comparison - match to template,
 - decision making - make category decision,
 - response selection - execute action
 - Parallel vs. serial processing
 - Functional independence: Donder’s method
 - Additive factors logic
 - Red line high luminance
 - Blue line low luminance
 - Does not interact with memory set size

- Derive multiple representations from same stimulus (physical, phonetic identity, conceptual category)
- Each require finite amount of time (serial stages)
Does functional decomposition map onto structure?
- Flow chart of transformations relate to neuroanatomy?
- Functional independence
 - Additive factors
 - Concurrent task
 - Supported by different brain regions?

Brain lesion method

IF: Function X is disrupted by lesion to brain region Y

THEN: Brain region Y supports function X

Human & nonhuman lesion studies

Human Neuropsychology
- Not under control of experimenter
- Acquired brain damage
 - Naturally occurring neurological condition or surgical treatment of condition
 - Single-case or group studies

Nonhuman animals
- Under control of experimenter
- Lesioning of selected brain structures
- Surgical or neurotoxic procedures
- Much more precise

Single & Double dissociations

- Single dissociation
 - Patient with damage to area X is impaired in function A but not function B
- Double dissociation
 - Patient with damage to area Y is impaired in function B but not cognition A

lesion to Broca’s area (X) impairs speech production (A) but not comprehension (B)

lesion of Wernicke’s area (Y) impairs comprehension (B) but not production (A)

Why are double dissociations so important?

- May not reflect distinct functions supported by brain regions
- Differences in task difficulty, required attention, etc.
- E.g., Prosopagnosia
 - Faces have less distinctive features, more difficult classification than objects
Lesion method: Limitations

- Issues
 - Variability in patients and lesions
 - Due to IQ differences
 - Quasi-Correlational in humans
 - Due to adjacent cortex
 - Achromatopsia/Prosopagnosia
- Possible solutions
 - Group studies can control for age, IQ, etc.
 - Lesion overlap across patients

More limitations: Disconnection Syndromes

- Is a brain region critical for a specific function?
- Lesion may disconnect two critical brain regions that are critical for cognition A

Split-brain patients

- Severing the corpus callosum leads to certain cognitive impairments
- But it's not the corpus callosum that carries out these functions

Lesion method: Sitting on a 2 legged stool

- Function not of area X but of brain without area X
- E.g., Ascribe function to missing leg: hold up stool on own?
 - All legs participate
 - Falling is a result of System level dysfunction

Brain measurement: Extracellular recording

- Rather than disrupt function measure neural correlates during its normal operation
 - Electrode inserted into brain near neuron or inside of neuron (intracellular)
 - Records voltage changes pooled over just a few neurons (or a single neuron)
 - Record # of action potentials
 - Logic
 - More AP, more participate in function

Receptive fields

- The area of space in which a neuron can be influenced (maximally)
 - Visual, auditory, somatosensory

Cellular recording: Limitations

- Done in nonhuman animals
 - Generalize to humans?
- How do workings of a few neurons relate to macroscopic/population level
 - Multi-cellular recording
 - 100+ neurons simultaneously
 - Still correlational
 - How relate to observed behavior
 - Correlated but not causally related
 - Motion perception: Record/stimulate
Epilepsy patients
Cortical mapping for cortical resection: Stim & Record
Cons: Neurologically dysfunctional brain

Intracranial recording: Humans

- Exposed cortex of epilepsy patient
- Grid work of electrodes laid over the surface for stimulation and recording

Functional imaging

- Brain recording in neurologically intact brains
- Not static: Anatomical/structural imaging
 - CT, MRI
- Dynamic: Physiological imaging
 - How vary over time (function)
 - Electrical
 - Intracranial EEG, ERP
 - Scalp EEG, ERP
 - Metabolic
 - PET, fMRI